prime ideal


prime ideal
Math.
an ideal in a ring with a multiplicative identity, having the property that when the product of two elements of the ring results in an element of the ideal, at least one of the elements is an element of the ideal.

Useful english dictionary. 2012.

Look at other dictionaries:

  • Prime ideal — In mathematics, a prime ideal is a subset of a ring which shares many important properties of a prime number in the ring of integers. This article only covers ideals of ring theory. Prime ideals in order theory are treated in the article on… …   Wikipedia

  • prime ideal — Math. an ideal in a ring with a multiplicative identity, having the property that when the product of two elements of the ring results in an element of the ideal, at least one of the elements is an element of the ideal. * * * …   Universalium

  • Prime ideal theorem — In mathematics, the prime ideal theorem may be * the Boolean prime ideal theorem * the Landau prime ideal theorem on number fields …   Wikipedia

  • Boolean prime ideal theorem — In mathematics, a prime ideal theorem guarantees the existence of certain types of subsets in a given abstract algebra. A common example is the Boolean prime ideal theorem, which states that ideals in a Boolean algebra can be extended to prime… …   Wikipedia

  • Landau prime ideal theorem — In mathematics, the prime ideal theorem of algebraic number theory is the number field generalization of the prime number theorem. It provides an asymptotic formula for counting the number of prime ideals of a number field K , with norm at most X …   Wikipedia

  • Prime number — Prime redirects here. For other uses, see Prime (disambiguation). A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is… …   Wikipedia

  • Ideal premier — Idéal premier Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier… …   Wikipédia en Français

  • Idéal Premier — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier si, et s …   Wikipédia en Français

  • Ideal maximal — Idéal maximal Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau est dit maximal si, et seulement si,… …   Wikipédia en Français

  • Idéal Maximal — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau est dit maximal si, et seulement si, il n es …   Wikipédia en Français